Introduction to Apache Spark APIs for Data Processing

Luca Canali
CERN IT, Data Analytics and Spark Service

W‘ 1

NS

Open Source Big Data - The
Beginning

2004: "MapReduce: Simplified Data Processing on Large
Clusters” J. Dean and S. Ghemawat (Google)

2006: Apache Hadoop as an open source
Implementation of the MapReduce programming model

- Hadoop MapReduce
- Haaoop YARN

- Hadoop Distributed File System (HDFS)

Spark to the Rescue

2009: “Spark: Cluster Computing with
Working Sets”, M. Zaharia et al.

- MR is slow, and is hard to program!

- Spark introduces Resilient Distributed
Dataset (RDD) abstraction

2014: Introduction of SparkML and GraphX

2015: Introduction of Spark SQL and
DataFrame APIs

2016-today: large adoption of Apache Spark
In the industry (Databricks, Apple, Netflix...)
and active development

2022 - June: latest release Spark 3.3.0

CE/RW
\

NS

—
0N
S—

Q

im

-

ing

Runn

4000
3000
2000
1000

1 5 10 20 30

Number of Iterations

® Hadoop
Spark

What is Apache Spark?

A unified analytics engine for large-scale data processing
with expressive development APIs
Enables processing of large data sets

Allows for sophisticated analytics, real-time streaming, and
machine learning

W‘)

N g

What is Apache Spark?

Use cases

Laptop

Hadoop
YARN

Clusters

Kubernetes

Standalone

Storage AELRCT:

Machine
Learning

Data
analysis

Streaming
Applications

Graph
Processing

SQL, Python, Scala, Java, R

Libraries

Csv

JSON

Parquet

Avro

ROOT

SparkSQL Spark ,
DataFrames Streaming rlLE GraphX
Spark Core engine
EOS rDBMg | Streaming | Cloud | |Other data
data (53...) sources

Data
formats

How does it work?

Computations are distributed across several
nodes

Optimized for running at scale
- Fault tolerance

CE/RW
/)

NS

CE/RW
\

Spark Architecture

Driver

Spark Session E

T e

s

User code =_

1

- Executor —
AT - A
y

v |

Executor Executor

‘h

T4
s
—

I

~ ﬂ]-.
'-n.‘ -.""'-,

Executor

A
4

ﬂ—-- -}
et

I

Cluster Manager

Spark Architecture - SparkSession

One-to-one correspondence between a
SparkSession and Spark Application

SparkSession
IS the entry point for user-defined data processing

SparkSession

IS avalilable as variable spark when you start Scala
console (spark-shell) or Python console (pyspark)

Spark Architecture

Driver
SparkSession Is created and resides here

Distributes and schedules work across the
executors

Manages executors lifecycle

When using REPL (command line) Is the rntry
point for Spark Shell (Scala) PySpark (Python)

Spark Architecture — Executor(s)

CE/RW
/)

Responsible for carrying out the work assigned
by the driver, at scale

Reading data from Storage (HDFS or external
sources)

Storing the data in cache in memory or on HDDs

Performing all data processing
Writing data to Storage (HDFS or external sinks)

10

N4

Cluster Manager

. The main cluster managers are:
- YARN: cluster manager of the Hadoop project

- Kubernetes: Linux containers orchestrator for cloud
developments

- Standalone: use this to manually setup a cluster
. Deploy modes:

- client mode: the driver is external from the cluster (i.e. on your
desktop or on a dedicated host)

- cluster mode: the application is running entirely in the cluster
(useful for batch use cases)

CE/RW
\

11

Spark DataFrames (DF)

DataFrames are the higher-level data structure and API in Spark

- Implemented using an immutable distributed table of records with
rows, columns and a schema

Analogous to:
- aTablein a DB (but: no indexes, primary keys, constraints, etc...)

- aDataFrame in Python/ R
Important:

- DataFrames are divided in partitions, distributed across multiple
executors

NS

Main Data Abstraction: Spark DataFrames

The dataframe
offers an API.
Dataframe J e DataFrame is a table-like abstraction
. Y s e me * similar to Pandas DF
columns.
(sozoeze: I I g s i)
g .Ol.ng-ECTID, ??'S:'D.J . NAME . 3 ADDRESS.1, LA .' . :") P Handles data with a schema
§ l .. .;f;f‘.g.. .. l .. .'sf;'[‘-g.. .. L .. .;f;'?.‘!- .. L .- .;f;'f"g.. .. il.'..s.t;'.”.g.. I L .. .;‘f;'f‘.q. .‘ ‘
- | —— | I N |
s : - = : - 7|| Eoch cqtumn DFs are partitioned and immutable
g [T, :]' e enables parallel execution
M | T o | |] * and fault tolerance at scale
J [- - Ro.w'#5 - - U‘—W
& " 7 The dataframe
. e e Parttion #1 ‘ : | exposes the
[1001] [04092016..] [WABA [2502 12..] [RALEIGH] [:;:e:;:a §:t.
g 1002 | [04092021.] [WALMAR] 2010 KIL..] [CARY])
§ 1003] [04092017.] [CAROLIN] [5951-107..] [RALEIGH] [..] ‘—\
1004 | (04092030..] [THE COR..| [7500 RA...| [RALEIGH | [| The dataframe
[1005 [04092015] [SUBWAY [12233 CA.. [WAKE F] [fg’:?s::i?:t‘e g
e Y storage.
/Wl ::::i tiisoz;:it into "I;I;:y c;:t‘afcr;:n; rllss .composed Egﬁ;ﬁ r:‘;orgo“zsopark in action”, Jean-Georges Perrin, 13

https://learning.oreilly.com/library/view/spark-in-action/9781617295522/

Actions and Transformations

Two types of operations on DFs:
- Transformations: transform a DF in another one:
filter, select, orderBy, ...

lazy evaluation: transformations do not trigger
computation

- Actions: trigger computation and return value

- show, count, collect, write, ...

N g

Narrow and Wide Transformations

Narrow transformations

are more performant, because they will be executed in
one pass in memory thanks to lazy evaluation

Wide transformations

result in data exchange between nodes, in a process
called shuffle

Shuffle optimization key for distributed data
operations

&) s

N g

Narrow and Wide Transformations

e |
=—» . filter/ . groupby
—l select
.
N
.| |
p union
e o
-/'
I

NS

Actions

Actions Instruct Spark to compute a result from a
series of transformations

Types of actions:
— actions for viewing data in the console

- collecting data to native objects, in respective
languages

- writing data to storage systems (HDFS, S3, EOS
etc)

CE/RW
\

17

Actions and Transformations

Lazy evaluation and immutability:

- Optimize query when more information Is
available

- Fault tolerance: the transformations can
be replayed on the original DF

@y 0

Example of Actions and
Transformations

from pyspark.sql import Row

df2=spark.createDataFrame ([Row (id=x) for x in
range (10) 1)

dfl=spark.createDataFrame ([Row (1d=x) for x in
range (10)])

dfl.filter (dfl.id>4).
.count () - ACTION

What about the Execution?

CE/RW
/)

Invoking an action creates a job, which is
then divided Iin stages and tasks.

Spark triggers the creation of graph of
computations (DAG) and its division Into
stages and tasks.

Tasks are the units of parallelization and are
run concurrently in the executors.

20

What about the execution?

Stage 7 Stage 8 Stage 9 Stage 10

parallelize parallelize Exchange Exchange Exchange

WholeStageCodeggn (2)
4

WholeStageCodegen (4) WholeStageCodegen (6)

mapPartitions mapPartitiopis

mapPartitipnsinternal

map

mapPartitions mapPartitions

WholeStageCodegen (1) WholgStageCodegen (3)

>>>df1.filter(df1l.id>4).join(df2,
dfl.id==df2.id).count()

21

Web ul

= Active Jobs (1)

Page: 1
Jobid ¥ Description

7 count at <console>26
count at <console>26

Page: 1
~ Completed Jobs (7)

Page: 1

Jobid v Description

6 show at <console=:26
show at <console=:26

5 show at <console=:28
show at <console>:28

4 show at <console=:28
show al <console>:28

CERN

1 Pages. Jump 1o 1

Show 100 flems in a page. Go

Submitted Duration Stages: Succeeded|Total Tasks (for all stages): SucceedediTotal
2019/08/10 17:50:13 17s o2 0/5 (4 running)
(Kill)
1Pages. Jumpto 1 Show 100 items in a page. Go
1Pages. Jumpto 1 Show 100 itemsin a page. Go
Submitted Duration Stages: Succeeded/Total Tasks (for all stages): Succeeded/Total
2019/08/10 17:49:30 0.5 n o
2019108110 17:48:32 08s an e
2018/08/10 17:47:40 2s £ e
Executors
~Show Additional Metrics
Selact All
On Heap Memory
Off Heap Memary
Summary
RDD Storage Disk Active Failed Complete Total Task Time Shuffle Shuffle
Blocks Memory Used Cores Tasks Tasks Tasks Tasks (GC Time) Input Read Write Blacklisted
Active(3) 0 59KB/11 QOB 2 0 0 5 5 4s5(025) 00B 00B 008 4]
GiB
Total(3) 0 59KB/11 0O0B 2 0 0 5 5 45(025) 00B 00B 008 0
GiB
Dead(0) 0 00B/0OB DOB 0 0 0 4] 0 0.0ms (0.0 ms) 0OB 008 008 [4]
Executors
Show 20 j entries Search:
Task
Time
Executor RDD Storage Disk Active Failed Complete Total (GC Shuffle Shuffle Thread
jin] , Address Status Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read Write Logs Dump
1 10.12.221.27:55834 Active 0 2KiB/ 00B 1 0 4] 3 3 2s{01 00OB O00B 00B stdout Thread
366.3 MIB s) stderr Dump
0 10.12.221.27:55835 Active 0 2KiB / 00B 1 0 4] 2 2 2s 0.0B 00B 00B stdout Thread
366.3 MiB (94.0 stderr Dump
ms)
driver 10.12.221.27:55827 Active 0 2 KiB / 00B 0 0 4] 0 0 00ms 0OEBE O00B 00B Thread
366.3 MiB {0.0 ms) Dump
Showing 1 to 3 of 3 entries Previous 1

Details for Query 2

Submitted Time: 2019/11/20 09:31:38
Duration: 1s
Succeeded Jobs: 12345

WhuleStagGCude en(1
587 ms (195 ms, 1

LocalTable Scan

number of output rows: 3

(HashAggregate

spill size total (min, med, max)
0.0B (0. B, 0.0 B)
time in aggs 1gallor’l bul\dlotal (min, med, max):
2ms (0 ms,
|;eak memorg total mln med, max):
68.0 KiB (256.0 Kil ZSEU KiB, 256.0 KiB)
number of output rows:
?[\'rg hash probe bucket list iters (min, med, max):

| Exchange

shuffle records written: 3

shuffle write time total (min, med, max):
118 ms (38 ms, 39 ms, 40 ms)

records read: 3

local bytes read total Bmin, med, max):
211.0B (70.0B, 141.0B, 141.0 B)
fetch wait time total (min, med, max):

0 ms (0 ms, 0 ms, 0 ms)

rﬂemule bgtes read Iulalémm med, max):

local blocks read 3

remote blocks read: 0

data size tefal (min. med, max):

930B(3108 31 0B 3108

remule gtes read lo disk tota (min, med, max):
0.0 0B, 0.0B]

shufﬂe b 2s written total min_med, max]).
2100B(70.0B8,70.0B, T0.0B)

Whole StageCodegen (2
875 ms (0 ms, 2 ms, 44 ms)

HashAggregate

sle size total (mln med, max)
0.0B(0.0B, 0.0 B
l\me in aggregzallon bul\dlulal (min, med, max):

eak memory total (min, med

40M|B$25 UIG 2560 KlB 2 MlB)
number of output Tows’
avg hash probe bucket I\sl iters (min, med, max):

(11,1)

| CollectLimit

} Details

22

CE/RW
_/

DataFrame API

23

Schema

. Schema is metadata: column
names, and data types of a
DataFrame

. Can be inferred on read, but it's
better to specify it when using large
JSON/CSV

— performance

- correctness

. Some formats store data with its
schema and are very useful for data
analytics.

Apache Parquet, ORC

Id, Name, Surname
1l,Albert,Einstein
2 ,Isaac,Newton

myschema="Id int, Name string,
Surname string"

spark.read.csv("scientists names.
csv" , schema=myschema)

24

Columns

Columns in Spark DFs are similar to columns in spreadsheet,
databases or pandas DataFrames

Select
- df.c
- df["c"] Remember! Neither
Manipulate of these modify the

they all return a
- df.withColumn("isEven",expr("a%2")) new one
Remove

- df.drop(a) /

_ Cf.WithCOlUmn(”a*3",expr("a*3")) // eXiSting Dataframe,

?E/RW ‘ 25

NS

Basic DataFrame Operations

Projection

df = spark.range(10)

df2 = df.select("id")

Selection

df3 = df.select("id") .filter("id > 5")

Aggregations

from pyspark.sql.functions import sum
‘ df4 = df.agg(sum("id"))

26

Caching DataFrames

CE/RW
/)

The cache method tells the Spark engine
that it must store the DF locally for later
reuse

Cache Is evaluated lazily, which means it Iis
run only when the first action is run

Use unpersist to remove data from cache

27

Key Learning Points

- Apache Spark
- Is alibrary and framework for data processing at scale

« Large adoption In industry and many integrations with
storage and compute systems

- Spark DataFrame

« It's a scalable and fault-tolerant abstraction for
processing data with schema

« It has a rich and powerful API for processing large
data sets

