
Introduction to Apache Spark APIs for Data Processing

Luca Canali
CERN IT, Data Analytics and Spark Service

1

Open Source Big Data - The

Beginning
● 2004: “MapReduce: Simplified Data Processing on Large

Clusters” J. Dean and S. Ghemawat (Google)

● 2006: Apache Hadoop as an open source

implementation of the MapReduce programming model

– Hadoop MapReduce

– Hadoop YARN

– Hadoop Distributed File System (HDFS)

2

Spark to the Rescue

● 2009: “Spark: Cluster Computing with
Working Sets”, M. Zaharia et al.

– MR is slow, and is hard to program!

– Spark introduces Resilient Distributed
Dataset (RDD) abstraction

● 2014: Introduction of SparkML and GraphX

● 2015: Introduction of Spark SQL and
DataFrame APIs

● 2016-today: large adoption of Apache Spark
in the industry (Databricks, Apple, Netflix...)
and active development

● 2022 - June: latest release Spark 3.3.0

3

What is Apache Spark?

● A unified analytics engine for large-scale data processing

with expressive development APIs

● Enables processing of large data sets

● Allows for sophisticated analytics, real-time streaming, and

machine learning

4

What is Apache Spark?
Use cases

Clusters

Storage

Data
formats

5

ROOT

How does it work?

● Computations are distributed across several

nodes

● Optimized for running at scale

– Fault tolerance

6

Spark Architecture

7

Spark Architecture - SparkSession

● One-to-one correspondence between a

SparkSession and Spark Application

● SparkSession

● is the entry point for user-defined data processing

● SparkSession

● is available as variable spark when you start Scala

console (spark-shell) or Python console (pyspark)

8

Spark Architecture

• Driver

● SparkSession is created and resides here

● Distributes and schedules work across the

executors

● Manages executors lifecycle

● When using REPL (command line) is the rntry

point for Spark Shell (Scala) PySpark (Python)

9

Spark Architecture – Executor(s)

● Responsible for carrying out the work assigned
by the driver, at scale

● Reading data from Storage (HDFS or external
sources)

● Storing the data in cache in memory or on HDDs

● Performing all data processing

● Writing data to Storage (HDFS or external sinks)

10

Cluster Manager
● The main cluster managers are:

– YARN: cluster manager of the Hadoop project

– Kubernetes: Linux containers orchestrator for cloud
developments

– Standalone: use this to manually setup a cluster

● Deploy modes:

– client mode: the driver is external from the cluster (i.e. on your
desktop or on a dedicated host)

– cluster mode: the application is running entirely in the cluster
(useful for batch use cases)

11

Spark DataFrames (DF)
● DataFrames are the higher-level data structure and API in Spark

– Implemented using an immutable distributed table of records with
rows, columns and a schema

● Analogous to:

– a Table in a DB (but: no indexes, primary keys, constraints, etc…)

– a DataFrame in Python / R

● Important:

– DataFrames are divided in partitions, distributed across multiple
executors

12

Main Data Abstraction: Spark DataFrames

Figure from “Spark in action”, Jean-Georges Perrin,

Manning, 2020 13

https://learning.oreilly.com/library/view/spark-in-action/9781617295522/

Actions and Transformations
● Two types of operations on DFs:

– Transformations: transform a DF in another one:

● filter, select, orderBy, ...

● lazy evaluation: transformations do not trigger

computation

– Actions: trigger computation and return value

– show, count, collect, write, …

14

Narrow and Wide Transformations
● Narrow transformations

● are more performant, because they will be executed in
one pass in memory thanks to lazy evaluation

● Wide transformations
● result in data exchange between nodes, in a process

called shuffle

● Shuffle optimization key for distributed data
operations

15

Narrow and Wide Transformations

● filter/

select

● union

● groupby

16

Actions
● Actions instruct Spark to compute a result from a

series of transformations

● Types of actions:

– actions for viewing data in the console

– collecting data to native objects, in respective
languages

– writing data to storage systems (HDFS, S3, EOS
etc)

17

Actions and Transformations

● Lazy evaluation and immutability:

– Optimize query when more information is

available

– Fault tolerance: the transformations can

be replayed on the original DF

18

Example of Actions and

Transformations

19

from pyspark.sql import Row

df2=spark.createDataFrame([Row(id=x) for x in

range(10)])

df1=spark.createDataFrame([Row(id=x) for x in

range(10)])

df1.filter(df1.id>4).join(df2,

df1.id==df2.id).count()

TRANSFORMATION

ACTION

What about the Execution?
● Invoking an action creates a job, which is

then divided in stages and tasks.

● Spark triggers the creation of graph of
computations (DAG) and its division into
stages and tasks.

● Tasks are the units of parallelization and are
run concurrently in the executors.

20

What about the execution?

>>>df1.filter(df1.id>4).join(df2,
df1.id==df2.id).count()

21

Web ui

22

DataFrame API

23

Schema
● Schema is metadata: column

names, and data types of a
DataFrame

● Can be inferred on read, but it’s
better to specify it when using large
JSON/CSV

– performance

– correctness

● Some formats store data with its
schema and are very useful for data
analytics.

● Apache Parquet, ORC

24

Id, Name, Surname

1,Albert,Einstein

2,Isaac,Newton

.....

myschema="Id int, Name string,

Surname string"

spark.read.csv("scientists_names.

csv" , schema=myschema)

Columns
● Columns in Spark DFs are similar to columns in spreadsheet,

databases or pandas DataFrames

● Select

– df.c

– df["c"]
● Manipulate

– df.withColumn("a*3",expr("a*3"))

– df.withColumn("isEven",expr("a%2"))
● Remove

– df.drop(a)
25

Remember! Neither
of these modify the
existing Dataframe,

they all return a
new one

Basic DataFrame Operations
● Projection

● Selection

● Aggregations

26

df = spark.range(10)

df2 = df.select("id")

df3 = df.select("id").filter("id > 5")

from pyspark.sql.functions import sum

df4 = df.agg(sum("id"))

Caching DataFrames

● The cache method tells the Spark engine

that it must store the DF locally for later

reuse

● Cache is evaluated lazily, which means it is

run only when the first action is run

● Use unpersist to remove data from cache

27

Key Learning Points

28

• Apache Spark

• Is a library and framework for data processing at scale

• Large adoption in industry and many integrations with
storage and compute systems

• Spark DataFrame

• It’s a scalable and fault-tolerant abstraction for
processing data with schema

• It has a rich and powerful API for processing large
data sets

