
Spark Course - Introduction to Apache Spark APIs
Building on DataFrames

Luca Canali
CERN IT, Data Analytics and Spark Service

1

Build a Data Platform with Spark
• What Spark (SQL and DataFrame API) do well:

• Provide powerful abstractions and rich language(s)

• Both for data preparation and analytics

• Run SQL at scale using distributed computing

• Runs on clusters (YARN/Hadoop, Kubernetes, etc)

• Integration with a large ecosystem

• Can use for many file formats: Parquet, csv, (ROOT), …

• Storage systems: HDFS, S3, (EOS), ...

• External systems: databases, elastic search, streaming, etc

• Table formats and transactions: Delta, Iceberg, Hudi
2

Data Ingestion - Examples
• Data pipelines into “data lakes”

3

Data Stream

Bulk File Source

Structured Streaming

Spark with JDBC data

source

File copy methods Distributed

Storage

Spark DataFrame Reader and Writer and

the Apache Parquet Data Format

DataFrame Reader API

• Spark can process many file-based data formats

• The DataFrame reader ingests from files or folders

• All files are read mapped into the DataFrame (table)

• Example of DataFrame reader ingesting Apache Parquet

5

>>> df = spark.read.format("parquet").load("filename")

>>> df = spark.read.parquet("PATH_and_directoryname")

Reading Partitioned Data

• Partition Discovery

• Partitions defined through the filesystem folder structure

• Naming convention: <partition_col=value>

6

Filesystem folder structure

table_name_folder

└── part_col=1

├── part-xxxxxx-id1.snappy.parquet

└── part_col=2

├── part-xxxxxx-id2.snappy.parquet

>>> df = spark.read.parquet("table_name_folder")

>>> df.printSchema() # will show part_col as a table column

DataFrame Writer

• Use “df.write.parquet” to write in Parquet format
• Use coalesce if you want to reduce the number of output partitions

• beware that it also affects/reduces the number of concurrent writer tasks

• The output is a structure of nested folders representing partitions

7

df.coalesce(N_partitions)

.write

.partitionBy("colPartition1", "colOptionalSubPart") # partitioning column(s)

.parquet("filePathandName")

Options

.repartition(col("colPartition1"), col("colOptionalSubPartition") # compact to 1 file

per partition

.option("compression","zstd") # the default compression algorithm is snappy

.mode("overwrite") # overwrite if the file/directory exists

Advantages of the Parquet Format
• Data is stored and accessed by column

• Optimized when your query needs to read only a few columns

• Data encoding

• Example: run length encoding to more efficiently store data repetition

• Compression also available

• Default is snappy compression: lightweight and good compression

• Also available: Zstandard, gzip, etc

• Data is stored with its schema

• Schema evolution is also supported

8

Advantages of the Parquet Format
• Spark is optimized for Parquet

• Integrates Hadoop Parquet-MR

• In addition, Spark has a custom vectorized
Parquet reader, for performance

• Filter pushdown and use of metadata
• Filters can be pushed down to the Parquet level

• Use of min/max and count values per row group
and per page

• used to skip reading data for improved performance

• work best when data is sorted on the filter column

• recent versions also support bloom filters

9

From an XKCD comic

Key Learning Points

• Spark ecosystem builds on DataFrames

• Spark can run SQL at scale, integrating with clusters,

storage systems

• Choosing the data format is key

• For many data analysis workloads columnar data

formats as Apache Parquet are a good fit

10

