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Build a Data Platform with Spark
• What Spark (SQL and DataFrame API) do well:

• Provide powerful abstractions and rich language(s)

• Both for data preparation and analytics

• Run SQL at scale using distributed computing

• Runs on clusters (YARN/Hadoop, Kubernetes, etc)

• Integration with a large ecosystem

• Can use for many file formats: Parquet, csv, (ROOT), …

• Storage systems: HDFS, S3, (EOS), ...

• External systems: databases, elastic search, streaming, etc

• Table formats and transactions: Delta, Iceberg, Hudi
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Data Ingestion - Examples
• Data pipelines into “data lakes”
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Spark DataFrame Reader and Writer and

the Apache Parquet Data Format



DataFrame Reader API

• Spark can process many file-based data formats

• The DataFrame reader ingests from files or folders

• All files are read mapped into the DataFrame (table)

• Example of DataFrame reader ingesting Apache Parquet
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>>> df = spark.read.format("parquet").load("filename")

>>> df = spark.read.parquet("PATH_and_directoryname")



Reading Partitioned Data

• Partition Discovery

• Partitions defined through the filesystem folder structure

• Naming convention: <partition_col=value>
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# Filesystem folder structure

table_name_folder

└── part_col=1

├── part-xxxxxx-id1.snappy.parquet

└── part_col=2

├── part-xxxxxx-id2.snappy.parquet

>>> df = spark.read.parquet("table_name_folder")

>>> df.printSchema() # will show part_col as a table column



DataFrame Writer

• Use “df.write.parquet” to write in Parquet format
• Use coalesce if you want to reduce the number of output partitions

• beware that it also affects/reduces the number of concurrent writer tasks

• The output is a structure of nested folders representing partitions
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df.coalesce(N_partitions)

.write

.partitionBy("colPartition1", "colOptionalSubPart") # partitioning column(s) 

.parquet("filePathandName")

# Options

.repartition(col("colPartition1"), col("colOptionalSubPartition") # compact to 1 file 

per partition

.option("compression","zstd") # the default compression algorithm is snappy

.mode("overwrite") # overwrite if the file/directory exists



Advantages of the Parquet Format
• Data is stored and accessed by column

• Optimized when your query needs to read only a few columns

• Data encoding

• Example: run length encoding to more efficiently store data repetition

• Compression also available 

• Default is snappy compression: lightweight and good compression

• Also available: Zstandard, gzip, etc

• Data is stored with its schema

• Schema evolution is also supported
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Advantages of the Parquet Format
• Spark is optimized for Parquet

• Integrates Hadoop Parquet-MR

• In addition, Spark has a custom vectorized 
Parquet reader, for performance

• Filter pushdown and use of metadata
• Filters can be pushed down to the Parquet level

• Use of min/max and count values per row group 
and per page

• used to skip reading data for improved performance

• work best when data is sorted on the filter column

• recent versions also support bloom filters
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From an XKCD comic



Key Learning Points

• Spark ecosystem builds on DataFrames

• Spark can run SQL at scale, integrating with clusters, 

storage systems

• Choosing the data format is key

• For many data analysis workloads columnar data 

formats as Apache Parquet are a good fit
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