Spark Course Introduction to the Machine Learning API in Apache Spark

Luca Canali CERN IT, Data Analytics and Spark Service

Why Spark for ML?

- Data preparation
 - Run distributed data ingestion, feature preparation
 - This step takes a large fraction of effort
- Scale: Hyperparameter search and training
- Familiar APIs similar to popular tools: scikit-learn

Figure from "Hidden technical debt in machine learning systems", Google, 2015

Typical Steps in a ML Project

- Explore your dataset
- Prepare the data for ML algorithms
 - Feature engineering
 - Feature preparation
- Model development
 - Experiment with different models for your problem
 - Hyperparameter tuning
- Train the model
 - Test and evaluate
 - Performance metrics
- Move to production and Inference

Spark APIs

- Explore your dataset
- Prepare the data for ML algorithms
 - Feature engineering
 - Feature preparation
- Search for the best model for your problem
- Train (and validate!)
- Inference

API: spark.ml

Figure from: Chambers, Zaharia, "Spark: The Definitive Guide", O'Reilly 2018

Key Components of spark.ml

- DataFrames:
 - Data processing with Spark's main API
- Transformers:
 - Algorithms that transform DFs (from input data to transformed data)
 - They have a *transform* method
- Estimators:
 - Algorithms that build custom Transformers based on data
 - They have a *fit* method.
- Pipelines:
 - Allow to put together multiple processing steps
 - Build ML workflows composed of Transformers and Estimators

Key Steps with Spark ML

Create a pipeline

from pyspark.ml import Pipeline

the pipeline prepares the features and feeds them to a model
pipeline = Pipeline(stages = [mytransform1,..., mymodel])

• Fit the pipeline to the training dataset

training_data, test_data = df.randomSplit([0.8, 0.2], 4242)
model_transformer = pipeline.fit(training_data)

Use the model against the test dataset

ML Model Training

- Supervised learning models
 - Classification: predict a label
 - Regression: predict a quantity
- Fitting a model to training data
 - Finding a (complex) function, learnt from data, to characterize the inputs

Figures from: Aurelien Geron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition", O'Reilly 2019

Machine Learning with Spark, Demo (Notebook)

Spark and Deep Learning

Bia

- Use Spark for data preparation at scale
 - Data exchange formats
 - Parquet, TFRecord, etc
- Run TensorfFlow/PyTorch on GPU
 - GPUs on SWAN: https://swan-k8s.cern.ch
- Tools with 3rd party work on integrating Spark with TensorFlow and Pytorch
 - Horovod, BigDL

HOROVOD

Key Learning Points

- Spark can run data preparation at scale for ML projects
 - Profit of Spark DataFrame API to read and process data from different sources and data formats
- Spark Machine Learning
 - Use Spark ML libraries to scale ML model training and hyper parameter tuning
 - Use Spark DataFrames and UDF for model inferencing

