
Introduction to Apache Spark:
running Spark on CERN resources

Luca Canali
CERN IT, Data Analytics and Spark Service

1

Start Small

● You can develop and run Spark on your laptop or

desktop or VM

● Many way to install and run Spark

● pip install pyspark

● download from https://spark.apache.org/downloads.html

● docker run -it apache/spark-py /opt/spark/bin/pyspark

● docker run -it apache/spark /opt/spark/bin/spark-shell # scala

2

https://spark.apache.org/downloads.html

Apache Spark Clusters at CERN

• Spark running on clusters:

• YARN/Hadoop -> established

• Spark on Kubernetes -> cloud-like use cases

NXCALS:

accelerator logging

Hadoop - YARN - 42 nodes

(Cores – 1.8k, Mem - 18 TB, Storage – 14 PB)

ANALYTIX:

General Purpose

Hadoop - YARN, 58 nodes

(Cores – 2.6k, Mem – 30 TB, Storage – 20 PB)

Cloud containers Kubernetes on CERN OpenStack Private Cloud

Cores - 270, Mem – 2 TB

Storage: remote HDFS or custom storage (CERN EOS, for

physics data, S3 on Ceph also available).

Note: GPU resources available.

3

Getting Started with the Spark Services at CERN

4

Documentation, Spark on Hadoop:

• https://hadoop-user-

guide.web.cern.ch/spark/Using_Spark_on_Hadoop/#getting-started

Request Access to Hadoop clusters:

• https://cern.service-now.com/service-portal?id=sc_cat_item&name=access-

cluster-hadoop&se=Hadoop-Service

https://hadoop-user-guide.web.cern.ch/spark/Using_Spark_on_Hadoop/#getting-started
https://hadoop-user-guide.web.cern.ch/spark/Using_Spark_on_Hadoop/#getting-started
https://cern.service-now.com/service-portal?id=sc_cat_item&name=access-cluster-hadoop&se=Hadoop-Service
https://cern.service-now.com/service-portal?id=sc_cat_item&name=access-cluster-hadoop&se=Hadoop-Service

Available Spark Clients at CERN

5

• SWAN

• Hosted Jupyter notebook service: http://swan.cern.ch

• Ad-hoc edge nodes
• ssh it-hadoop-client.cern.ch

• Managed Spark Client environment

• CERN Hadoop container image

• https://hadoop-user-guide.web.cern.ch/getstart/client_docker

• Run from lxplus.cern.ch

• https://hadoop-user-guide.web.cern.ch/getstart/client_cvmfs

http://swan.cern.ch/
https://hadoop-user-guide.web.cern.ch/getstart/client_docker
https://hadoop-user-guide.web.cern.ch/getstart/client_cvmfs

Using it-hadoop-client

ssh it-hadoop-client

configuration for Hadoop and Spark
source hadoop-setconf.sh hadoop-analytix

run PySpark
pyspark

Creating Spark Applications
● There are several ways to create a Spark

Application:

– REPL: pyspark (python), spark-shell (Scala)

– Self-contained applications (aka using Spark as a

library)

– spark-submit (batch mode)

Spark REPL / Shell

● REPL stands for “read-eval-print loop”

– Best for interactivity, development and
debugging

– Spark comes with a Python (pyspark) and a
Scala (spark-shell) shell where the
SparkSession is already set up and
available as the spark object

Using Spark as a Library

from pyspark.sql import SparkSession

spark = (SparkSession

 .builder

 .appName("training")

 .master("local[*]")

 .getOrCreate())

df=spark.sql("select 'hello, world!' as msg")

df.show()

$ pip install pyspark

$ python my_code.py

+-------------+

| msg|

+-------------+

|hello, world!|

+-------------+

Using spark-submit

• Uniform interface to all the cluster manager

• Best for production (batch - ETL) use cases.

bin/spark-submit --master yarn \

--num-executors 2 --executor-memory 8g \

examples/src/main/python/pi.py 1000

Spark Configuration

Three main configuration files in

$SPARK_HOME/conf or $SPARK_CONF_DIR

1) Spark Properties: control application parameters

● spark-defaults.conf

2) Environment variables: per-machine settings

● spark-env.sh

3) Logging: through log4j2

● log4j2.properties

● was log4j.properties for older Spark versions

Spark Configuration

Spark properties

1) set properties when creating a SparkConf

object in your code
>>> from pyspark.sql import SparkSession
>>> spark = (SparkSession.builder
... .appName("training")
... .config("spark.executor.cores", "2")
... .getOrCreate())

Spark Configuration

Spark properties

2) Set as runtime command line options

pyspark --master yarn \
--app-name ‘training’ \
--conf spark.executor.cores=2

Spark Configuration

Spark properties

3) Set in the configuration directory, the spark-

defaults.conf file

 $ head spark-defaults.conf

spark.master yarn
spark.executor.cores 4
spark.executor.memory 8g
spark.executor.instances 2

Logging and Environment

● More advanced configurations

– log4j2.properties file in the configuration

folder

– environment variables are sourced from
spark-env.sh

CERN Hadoop Configuration
● CERN configuration file for Spark. Run using:

● Already setup in IT managed clients, it’s in $HADOOP_CONF_DIR

– default HDFS namespace
• <property>
• <name>fs.defaultFS</name>
• <value>hdfs://analytix/</value>
• </property>

– Hadoop specific settings

– YARN configuration

source hadoop-setconf.sh hadoop-analytix

Dependencies - Java
● Extend Spark with custom jar files

● --jars <list of jar files>

● The jars will be copied to the executors and added to their

classpath

● Ask Spark to download jars from a repository

● --packages <list of Maven Central coordinates>

● Will download the jars and dependencies in the local cache,

jars will be copied to executors and added to their classpath

Dependencies - Python
● Command line option

● --py-files <list of .py files or .zip bundles>

● Allows to ship Python packages to executors

● When using SWAN, there is a configuration option Include
PropagateUserPythonModules options that adds packages installed
with pip install --user

● More advanced uses cases

● See Python package management in the documentation
https://spark.apache.org/docs/latest/api/python/user_guide/pytho
n_packaging.html

https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html
https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html

CERN SWAN

• Analytics and ML Platform

19

Software

Storage

Infrastructure

UI/Core

Analysis

platforms

Compute

Spark Configuration with SWAN

Spark configuration via a
GUI tool

• Customize specific
parameters

• Pre-defined parameter
bundles also available

Key Learning Points

21

• You can run Apache Spark at scale on CERN resources:

Hadoop and Cloud

• Spark has a large set of configuration options
• You can use Spark in multiple modes: from shell, as a library, batch, with

Python, with Scala,…

• The CERN SWAN web notebooks service is integrated

with Spark/Hadoop clusters
• Reduces complexity of running Spark

• Best option to start exploring Spark at CERN

Tutorials

• See notebooks and associated videos

	Slide 1
	Slide 2: Start Small
	Slide 3: Apache Spark Clusters at CERN
	Slide 4: Getting Started with the Spark Services at CERN
	Slide 5: Available Spark Clients at CERN
	Slide 6: Using it-hadoop-client
	Slide 7: Creating Spark Applications
	Slide 8: Spark REPL / Shell
	Slide 9: Using Spark as a Library
	Slide 10: Using spark-submit
	Slide 11: Spark Configuration
	Slide 12: Spark Configuration
	Slide 13: Spark Configuration
	Slide 14: Spark Configuration
	Slide 15: Logging and Environment
	Slide 16: CERN Hadoop Configuration
	Slide 17: Dependencies - Java
	Slide 18: Dependencies - Python
	Slide 19: CERN SWAN
	Slide 20: Spark Configuration with SWAN
	Slide 21: Key Learning Points
	Slide 22: Tutorials

